S

93102

For Supervisor's use only

Scholarship 2009 Chemistry

9.30 am Saturday 28 November 2009 Time allowed: Three hours Total marks: 48

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

A periodic table is provided on page 2 of this booklet.

Write all your answers in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–25 in the correct order and that none of these pages is blank.

You are advised to spend approximately 30 minutes on each question.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

PERIODIC TABLE OF THE ELEMENTS

]		
18	2	He	4.0	10	Ne	20.2	18	Ar	40.0	36	Kr	83.8	54	Xe	131	98	Rn	222			
			IJ	6	Έ.	19.0	17	C	35.5	35	Br	6.62	53	Ι	127	85	At	210			
			91	8	0	16.0	16	S	32.1	34	Se	79.0	52	Te	128	84	P_0	210			
			15	7	Z	14.0	15	Ь	31.0	33	As	74.9	51	$\mathbf{S}\mathbf{b}$	122	83	Bi	209			
			14	9	C	12.0	14	Si	28.1	32	Ge	72.6	50	Sn	119	82	Pb	207			
			13	5	В	10.8	13	Al	27.0	31	Сa	69.7	49	In	115	81	П	204			
									12	30	Zn	65.4	48	Cd	112	80	$_{ m Hg}$	201			
									II	29	Cu	63.5	47	Ag	108	62	Au	197			
			10I ⁻¹						01	28	Z	58.7	46	Pd	106	78	Pt	195			
			Molar Mass/g mol ⁻¹	0					6	27	ပ	58.9	45	Rh	103	77	Ir	192	109	Mt	268
			Molar]						8	26	Fe	55.9	44	Ru	101	92	Os	190	108	Hs	265
	1	Н	1.0						_	25	Mn	54.9	43	Tc	6.86	75	Re	186	107	Bh	264
	Jumper								9	24	Cr	52.0	42	Mo	95.9	74		184	106	S	263
	Atomic Number								5	23	>	50.9	4		92.9	73	Та	181	105	Dp	262
	,								4	22	Ξ	47.9	40	Zr	91.2	72	Ht	179	104	Rf	261
									3	21	Sc	45.0	39	Y	88.9	71	Lu	175	103	Lr	262
			2	4	Be	0.6	12	Mg	24.3	20	Са	40.1	38	\mathbf{Sr}	9.78	99	Ba	137	88	Ra	226
			I	3	Li	6.9	11	Na	23.0			39.1	37			55	C	133	87	Fr	223

02 69	Tm Yb	169 173		Md No	
89	Er	167	100	Fm	257
29	$_{ m H0}$	165	66	Es	252
99	Dy	163	86	Ct	251
65	Tb	159	97	Bķ	249
64	PS Ca	157	96	Cm	244
63	Eu	152	95	Am	241
62	Sm	150	94	Pu	239
61	Pm	147	93	ď	237
09	PN	144	92	n	238
59	Pr	141	91	Pa	231
58	Ce	140	06	Th	232
57	La	139	68	Ac	227
	Lanthanide	Series		Actinide	Series

You have three hours to complete this examination.

QUESTION ON	E (8 marks)
-------------	-------------

(a)	(i)	Draw a 3-dimensional structure for each of the possible isomers of the pentahalide PCl ₃ F ₂ , indicating the size of the F-P-F bond angle in each isomer.
	(ii)	In VSEPR theory it is assumed that the bond from the central atom to an atom of lower electronegativity occupies more space than the bond from the central atom to an atom of higher electronegativity. Comment on the polarity of each of the isomers of PCl ₃ F ₂ and identify the isomer that is most likely to occur.

(iii)	Upon standing for several days at low temperature, phosphorus pentahalide compounds convert to isomeric ionic solids.	Assessor's use only
	In crystalline PBr ₄ Cl, only one of the two ions formed contains phosphorus.	
	Predict the formulae of the ions in solid PBr ₄ Cl, and justify your answer.	

(b)

bono	possible isomers may be formed when H ⁺ reacts with isocyanate, NCO ⁻ , as the H ⁺ may d to either nitrogen or oxygen. A structural study of one of the isomers that is produced we that it has a bond angle of 105° at the atom to which the H is attached.	Assessor's use only
•	Draw Lewis diagrams for the two possible structures of the product.	
•	Identify and explain which Lewis diagram better represents the structure of the product with the bond angle of 105° mentioned above.	

QUESTION TWO (8 marks)

(a)	Titanium is a Group 4 transition metal. There are three different chlorides of titanium: TiCl ₂ ,
	TiCl ₃ and TiCl ₄ . One of these chlorides, A , is a solid that dissolves in water to produce a
	mildly acidic purple solution. On standing in the presence of air, the colour of this solution
	fades, and a white solid, TiO ₂ , is formed. The chlorides B and C are very reactive toward
	water. B is a liquid and reacts to produce a strongly acidic solution and TiO ₂ . C reacts with
	acidified water to produce a purple solution and hydrogen gas.

metals. Includ	e balanced equ	nations for th	ne reactions d	escribed.	of other transiti

$E^0(\Pi \Omega/\Pi) = 0.42 \text{ V}$	$F^{0}(O / H O) = 0.82 \text{ V}$	
$E^{0}(H_{2}O/H_{2}) = -0.42 \text{ V}$	$E^{3}(O_{2}/H_{2}O) = 0.82 \text{ V}$	
		—
		—
		—
		—

(b)	Titanium occurs naturally both as ilmenite (FeTiO ₃) and TiO ₂ . The isolation of titanium metal from ilmenite involves heating ilmenite, chlorine and carbon to form TiCl ₄ . This is then converted into titanium metal by treatment with magnesium.									
	$2\text{FeTiO}_3 + 7\text{Cl}_2 + 6\text{C} \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$									
	Discuss the possible oxidation number changes and electron transfers that occur in the conversion of ilmenite to TiCl ₄ , taking into consideration the variety of oxidation numbers that are possible for the metals.									

QUESTION THREE (8 marks)

(a)	(i)	The structural formula of the amino acid glycine can sometimes be written as $H_3NCH_2COO^-$ (a zwitterion) and sometimes as H_2NCH_2COOH .
		Explain which structure is more appropriate, taking into account functional group chemistry and the fact that glycine is a crystalline solid that has a melting point of 233°C.

(ii)	The amino acids serine and aspa	aragine have the zwitterion structures shown below.	Assessor's use only
		H N-CH-COO-	
	H ₃ N-CH-COO-	H ₃ N - CH - COO - CH ₂	
	CH ₂	C=O	
	OH	NH ₂	
	serine	-	
	serme	asparagine	
	These amino acids can be linked	I to form two different dipeptides.	
		ese dipeptides change as the pH of the aqueous idic, through neutral, to highly basic.	
	Include structural formulae in yo	our answer.	
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			_
			-

of the organic products.	nvolved in preparing and isolating pure samples

(c)	Compound A has the formula $C_9H_{18}O_3$.	
	When compound $\bf A$ is refluxed with dilute sulfuric acid, it forms compound $\bf B$, $C_6H_{12}O_3$ and compound $\bf C$, C_3H_8O . Both compounds $\bf B$ and $\bf C$ react with acidified potassium dichromate to produce compounds $\bf D$, $C_6H_{10}O_3$ and $\bf E$, C_3H_6O respectively. Neither compound $\bf D$ nor $\bf E$ reacts with Tollens' reagent.	
	When compound B is reacted with concentrated sulfuric acid, it produces THREE structural isomers F , G and H , of molecular formula $C_6H_{10}O_2$, all of which are optically active. F exists as geometrical isomers, but G does not. Both F and G decolourise a solution of bromine, H does not.	
	Give the structural formulae for compounds A to H that are consistent with the information above.	

Space for working.

QUESTION FOUR (8 marks)

Assessor's use only

(a) Models are representations used to explain observed phenomena.

A model useful for describing the physical properties of Group 18 elements views the particles of these elements as individual atoms.

In contrast, various properties of metals, both in solid and liquid form, can be explained by a model that views the structure of the metal as cations submerged in a "sea of electrons". In this model, the "electron sea" consists of valence electrons moving freely throughout the metal structure.

The table below shows the melting points (mp) and boiling points (bp) for selected elements in Groups 1 and 18 of the periodic table.

1	2	13	14	<i>15</i>	<i>16</i>	17	18
Li mp: 180°C bp: 1342°C	Be						Ne mp: -249°C bp: -246°C
Na mp: 98°C bp: 883°C	Mg						Ar mp: -189°C bp: -186°C
K mp: 63°C bp: 760°C	Ca						Kr mp: -157°C bp: -152°C
Rb mp: 39°C bp: 686°C	Sr						Xe mp: -112°C bp: -108°C

- (i) Explain the trend in boiling points of the Group 18 elements.
- (ii) Discuss how each of the statements below is evidence for the different models described above.
 - The boiling point of a Group 18 element is significantly lower than the boiling point of the Group 1 element with the next higher atomic number.
 - The difference between the boiling point and the melting point of a Group 1 metal, such as sodium, is much larger than the difference between the boiling point and melting point of a Group 18 element, such as argon.

(iii)	Predict, using the "electron sea" model described above, how the boiling points for the Group 1 metals would compare with those for the Group 2 metals.

Assessor's
use only

(b) The standard enthalpy of atomisation, $\Delta_{\rm at}H^{\circ}$, is defined as the enthalpy change when 1 mole of atoms, in the gas phase, is formed from the element in its standard state at 25°C.

Element	Standard Enthalpy of Atomisation, $\Delta_{\rm at} H^{\circ}$ / kJ mol ⁻¹
С	717
F	79
Cl	122

	Bond Enthalpy / kJ mol ⁻¹
C–F	485
C-C1	328

alculate the standa	Iculate the standard enthalpy of formation, $\Delta_f H^{\circ}$, of trichlorofluoromethane, $CCl_3F(g)$.			

QUESTION FIVE (8 marks)

Assessor's use only

(a) When silver ions are dissolved in an aqueous ammonia solution, complex ions of $Ag(NH_3)_2^+(aq)$ form. The formation of $Ag(NH_3)_2^+(aq)$ occurs in two steps that are represented by the equations below, together with the corresponding equilibrium constant for each reaction.

$$Ag^+(aq) + NH_3(aq) \rightleftharpoons Ag(NH_3)^+(aq)$$
 $K_1 = 2.1 \times 10^3$

$$Ag(NH_3)^+(aq) + NH_3(aq) \implies Ag(NH_3)_2^+(aq)$$
 $K_2 = 8.2 \times 10^3$

 $0.15 \text{ mol of AgNO}_3(s)$ is dissolved in 1.00 L of a 1.00 mol L^{-1} solution of aqueous ammonia.

Use the values of the equilibrium constants to identify the major species in this solution at equilibrium, and hence calculate the concentrations in mol L^{-1} of the Ag^+ , $Ag(NH_3)^+$ and $Ag(NH_3)_2^+$ ions.	

(b)	15.35 g of a mixture of sodium nitrate, NaNO $_3$, and magnesium nitrate, Mg(NO $_3$) $_2$, was heated until no more gases were evolved. The NaNO $_3$ decomposes giving sodium nitrite, NaNO $_2$, and oxygen gas, while the Mg(NO $_3$) $_2$ decomposes to give the metal oxide, nitrogen dioxide and oxygen. The water-soluble part of the residue produced on heating was used to prepare 1.00 L of solution. 10.00 mL of this solution was reacted with 20.00 mL of 0.0200 mol L ⁻¹ acidified potassium permanganate (which oxidises nitrite to nitrate). The excess potassium permanganate required 10.25 mL of 0.0500 mol L ⁻¹ oxalic acid, H $_2$ C $_2$ O $_4$, for complete reaction in which oxalic acid is oxidised to form CO $_2$.	Assessor's use only
	Write balanced equations for all of the reactions occurring above, and hence calculate the mass, in grams, of each metal nitrate present in the original mixture.	

Assessor's use only

QUESTION SIX (8 marks)

Assessor's use only

Three flasks contain aqueous solutions of the **same pH**. One of the solutions is $0.0010 \text{ mol } L^{-1}$ nitric acid, one is $0.0060 \text{ mol } L^{-1}$ methanoic acid (HCOOH) and one is $0.040 \text{ mol } L^{-1}$ anilinium hydrochloride ($C_6H_5NH_3Cl$).

Discuss the change in both the pH of each of the solutions and the concentrations of the	
species present.	
NO CALCULATIONS ARE REQUIRED.	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question number	
	L

Question number	

Question number	

Question number	

For Assessor's Use Only		
Question Number	Marks	
ONE		
	(8)	
TWO		
	(8)	
THREE		
	(8)	
FOUR		
	(8)	
FIVE		
	(8)	
SIX		
	(8)	
TOTAL	(48)	

For Assessor's use only.

Keep flap folded in.